

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at bigbang-owners@data-activism.net.
All complaints will be reviewed and investigated and will result in a response
that is deemed necessary and appropriate to the circumstances. The project
team is obligated to maintain confidentiality with regard to the reporter of
an incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

[homepage]: https://www.contributor-covenant.org

 # BigBang

BigBang is a toolkit for studying communications data from collaborative
projects. It currently supports analyzing mailing lists from Sourceforge,
Mailman, or [.mbox][mbox] files.

[mbox]: http://tools.ietf.org/html/rfc4155

[![Gitter](https://badges.gitter.im/datactive/bigbang.svg)](https://gitter.im/datactive/bigbang?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)

Installation*

You can use [Anaconda](https://www.anaconda.com/). This will also install
the conda package management system, which you can use to complete
installation.

[Install Anaconda](https://www.anaconda.com/download/), with Python version
3.*.

If you choose not to use Anaconda, you may run into issues with versioning in
Python. Add the Conda installation directory to your path during installation.

You also need need to have Git and Pip (for Python3) installed.

Run the following commands:

```bash

git clone https://github.com/datactive/bigbang.git
cd bigbang
bash conda-setup.sh
python3 setup.py develop –user
```

Usage

There are serveral Jupyter notebooks in the examples/ directory of this
repository. To open them and begin exploring, run the following commands in the root directory of this repository:

`bash
source activate bigbang
ipython notebook examples/
`

Collecting mail archives

BigBang comes with a script for collecting files from public Mailman web
archives. An example of this is the
[scipy-dev](http://mail.python.org/pipermail/scipy-dev/) mailing list page. To
collect the archives of the scipy-dev mailing list, run the following command
from the root directory of this repository:

`bash
python3 bin/collect_mail.py -u http://mail.python.org/pipermail/scipy-dev/
`

You can also give this command a file with several urls, one per line. One of these is provided in the examples/ directory.

`bash
python3 bin/collect_mail.py -f examples/urls.txt
`

Once the data has been collected, BigBang has functions to support analysis.

Collecting IETF draft metadata

BigBang can also be used to analyze data from IETF drafts.

It does this using the Glasgow IPL group’s ietfdata [tool](https://github.com/glasgow-ipl/ietfdata).

The script takes an argument, the working group acronym

`bash
python3 bin/collect_draft_metadata.py -w httpbis
`

Git

BigBang can also be used to analyze data from Git repositories.

Documentation on this feature can be found [here](https://github.com/datactive/bigbang/blob/master/git-readme.md).

Development

Unit tests

To run the automated unit tests, use: pytest tests/unit.

Our current goal is code coverage of 60%. Add new unit tests within tests/unit. Unit tests run quickly, without relying on network requests.

Documentation

Docstrings are preferred, so that auto-generated web-based documentation will be possible ([#412](https://github.com/datactive/bigbang/issues/412)). You can follow the [Google style guide for docstrings](https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings).

Formatting

Run pre-commit install to get automated usage of black, flake8 and isort to all Python code files for consistent formatting across developers. We try to follow the [PEP8 style guide](https://pep8.org/).

Community

If you are interested in participating in BigBang development or would like support from the core development team, please subscribe to the [bigbang-dev mailing list](https://lists.ghserv.net/mailman/listinfo/bigbang-dev) and let us know your suggestions, questions, requests and comments. A [development chatroom](https://gitter.im/datactive/bigbang) is also available.

In the interest of fostering an open and welcoming environment, we as contributors and maintainers [pledge to make participation in our project and our community a harassment-free experience for everyone](CODE_OF_CONDUCT.md).

Troubleshooting

If the installation described above does not work, you can try to run the installation with Pip:

`bash
git clone https://github.com/datactive/bigbang.git
optionally create a new virtualenv here
pip3 install -r requirements.txt
python3 setup.py develop --user
`
If you have problems installing, you might want to have a look at the video tutorial below (clicking on the image will take you to YouTube).

[![BigBang Video Tutorial](http://img.youtube.com/vi/JWimku8JVqE/0.jpg)](http://www.youtube.com/watch?v=JWimku8JVqE “BigBang Tutorial”)

License

MIT, see LICENSE for its text. This license may be changed at any time according to the principles of the project [Governance](https://github.com/datactive/bigbang/wiki/Governance).

 # Git Information

A new branch of BigBang is collecting git commit information for projects. We can analyze a project using both its mail and git information to answer new questions about development.

Collecting Git Information

After the git repositories have been cloned locally, you will be able to start analyzing them. To do this, you will need a GitRepo object, which is a convenient wrapper which does the work of extracting and generating git information and storing it internally in a pandas dataframe. You can then use this GitRepo object’s methods to gain access to the large pandas dataframe.

There are many ways to generate a GitRepo object for a repository, using RepoLoader:
* Bash scripts (in the bigbang directory):

	single url python bin/collect_git.py -u https://github.com/scipy/scipy.git

	file of urls python bin/collect_git.py -f examples/git_urls.txt

	Github organization name python bin/collect_git.py -g glass-bead-labs

	
	Single Repo:
	
	remote get_repo(“https://github.com/sbenthall/bigbang.git”, in_type = “remote”)

	local get_repo(“~/urap/bigbang/archives/sample_git_repos/bigbang”, in_type = “local”)

	name get_repo(“bigbang”, in_type = “name”)

	
	Multiple Repos:
	
	With repo names: get_multi_repo(repo_names=[“bigbang”,”django”])

	With repo objects: get_multi_repo(repos=[{list of existing GitRepo objects}]

	With Github Organization names get_org_multirepo(“glass-bead-labs”)

Repo Locations
As of now, repos are clones into archives/sample_git_repos/{repo_name}. Their caches are stored at archives/sample_git_repos/{repo_name}_backup.csv.

Caches
Caches are stored at archives/sample_git_repos/{repo_name}_backup.csv. They are the dumped .csv files of a GitRepo object’s commit_data attribute, which is a pandas dataframe of all commit information. We can initialize a GitRepo object by feeding the cache’s Pandas dataframe into the GitRepo init function. However, the init function will need to do some processing before it can use the cache as its commit data. It needs to convert the “Touched File” attribute of the cache dataframe from unicode “[file1, file2, file3]” to an actual list [“file1”, “file2”, “file3”]. It will also need to convert the time index of the cache from string to datetime.

Bash Scripts

Run the following commands while in the bigbang directory. The repo information will go into the default repo location.

`bash
python bin/collect_git.py -u https://github.com/scipy/scipy.git
`

You can also give this command a file with several urls, one per line. One of these is provided in the examples/ directory.

`bash
python bin/collect_git.py -f examples/git_urls.txt
`

This command will load all of the repos of a github organization. Make sure that the name is exactly as it appears on Github.

`bash
python bin/collect_git.py -g glass-bead-labs
`

Single Repos
Here, we can load in three ways. We can use a github url, a local path to a repo, or the name of a repo. All of these return a GitRepo object. Here is an example, with explanations below.

```python
from bigbang import repo_loader # The file that handles most loading

repo = repo_loader.get_repo(”https://github.com/sbenthall/bigbang.git”, in_type = “remote” )
# repo = repo_loader.get_repo(“../”,  in_type = “local” ) # I commented this out because it may take too long
repo = repo_loader.get_repo(“bigbang”, in_type = “name”)

repo.commit_data # The pandas df of commit data
```

Remote
A remote call to get_repo will extract the repo’s name from its git url. Thus, https://github.com/sbenthall/bigbang.git will yield bigbang as its name. It will check if the repo already exists. If it doesn’t it will send a shell command to clone the remote repository to archives/sample_git_repos/{repo_name}. It will then return get_repo({name}, in_type=”name”). Before returning, however, it will cache the GitRepo object at archives/sample_git_repos/{repo_name}_backup.csv to make loading faster the next time.

Local
A local call is the simplest. It will first extract the repo name from the filepath. Thus, ~/urap/bigbang/archives/sample_git_repos/bigbang will yield bigbang. It will check to see if a git repo exists at the given address. If it does, it will initialize a GitPython object, which only needs a name and a filepath to a Git repo. Note that this option does not check or create a cache.

Name
This is the preferred and easiest way to load a git repository. It works under the assumptions above about where a git repo and its cache should be stored. It will check to see if a cache exists. If it does, then it will load a GitPython object using that cache.

If a cache is not found, then the function constructs a filepath from the name, using the above rule about where repo locations. It will pass off the function to get_repo(filepath, in_type=”local”). Before returning the answer, it will cache the result.

MultiRepos
These are the ways we can get MultiGitRepo objects. MultiGitRepo objects are GitRepos that were created with a list of GitRepos. Basically, a MultiGitRepo’s commit_data contains the commit_data from all of its GitRepos. The only difference is that each entry has an extra attribute, Repo Name that tells us which Repo that commit is initially from. Here are some examples, with explanations below. Note that the examples below will not work if you don’t have an internet connection, and may take some time to process. The first call may also fail if you do not have all of the repositories

```python
from bigbang import repo_loader # The file that handles most loading

## Using GitHub API
multirepo = repo_loader.get_org_multirepo(“glass-bead-labs”)

## List of repo names
multirepo = repo_loader.get_multi_repo(repo_names = [“bigbang”,”bead.glass”])

## List of actual repos
repo1 = repo_loader.get_repo(“bigbang”, in_type=”name”)
repo2 = repo_loader.get_repo(“bead.glass”, in_type=”name”)
multirepo = repo_loader.get_multi_repo(repos = [repo1, repo2])

multirepo.commit_data # The pandas df of commit data
```

List of Repos / List of Repo Names (get_multi_repo)
This is rather simple. We can call the get_multi_repo method with either a list of repo names [“bigbang”, “django”, “scipy”] or a list of actual GitRepo objects. This returns us the merged MultiGitRepo. Please note that this will not work if a local clone / cache of the repos does not exist for every repo name (e.g. if you ask for [“bigbang”, “django”, “scipy”], you must already have a local copy of those in your sample_git_repos directory.

Github Organization’s Repos (get_org_multirepo)
This is more useful to us. We can use this method to get a MultiGitRepo that contains the information from every repo in a Github Organization. This requires that we input the organization’s name exactly as it appears on Github (edX, glass-bead-labs, codeforamerica, etc.)

It will look for examples/{org_name}_urls.txt, which should be a file that contains all of the git urls of the projects that belong to that organization. If this file doesn’t yet exist, it will make a call to the Github API. This requires a stable internet connection, and it may randomly stall on requests that do not time out.

The function will then use the list of git urls and the get_repo method to get each repo. It will use this list of repos to create a MultiGitRepo object, using get_multi_repo.

 # This is a description of the following URL collections:

a collection of Code for America git repositories
cfa_urls.txt

a collection of Code for America mailing lists
codeforamerica_urls.txt

a collection of git repositories of the social science data lab at UC Berkeley
dlab-berkeley_urls.txt

a collection of Open edX platform git repositories
edX_urls.txt

a collection of git repositories of the following projects: django, scipy, npm and sbenthall’s branch of BigBang
git_urls.txt

a collection of git repositories of the Glass Beads Labs for Social Measurement at UC Berkeley
glass-bead-labs_urls.txt

a collection of all public ICANN mailing lists per March 2018
mm.icann.org.txt

a collection of all public IETF mailing lists per March 2018
mm.ietf.org.txt

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

